UTA DevHub

Offline-First Strategies in React Native

Implementing robust data synchronization with WatermelonDB and optimizing local SQLite database performance for offline React Native applications.

Overview

This guide focuses on building offline-first React Native applications. We will explore data synchronization patterns using libraries like WatermelonDB, which offers robust conflict resolution, and discuss performance optimization for local databases like SQLite through effective indexing.

Data Synchronization Patterns

For applications that need to function reliably offline, a robust data synchronization strategy is essential. WatermelonDB is a reactive database framework that excels in managing local data and synchronizing it with a backend, featuring built-in conflict resolution mechanisms.

(Do ✅) Use WatermelonDB for robust offline data synchronization and conflict resolution: Its sync adapter implementation is designed to handle a high percentage (99.8%) of write conflicts, especially in scenarios with poor or intermittent connectivity [1].

// Example: Conceptual sync adapter implementation with WatermelonDB
// Actual implementation details would depend on your backend API and data models.
 
// Assuming 'database' is your WatermelonDB instance
// and 'pullChanges', 'applyChange', 'getLocalChanges', 'pushChanges' 
// are functions interacting with your backend.
 
// async function pullChangesFromServer(lastPulledAt) {
//   // Fetch changes from your server since lastPulledAt
//   // const response = await fetch(`/api/sync?last_pulled_at=${lastPulledAt}`);
//   // const changes = await response.json();
//   // return changes; // { [tableName]: { created: [], updated: [], deleted: [] } }
//   return {}; // Placeholder
// }
 
// async function pushChangesToServer(changes) {
//   // Push local changes to your server
//   // await fetch('/api/sync', { method: 'POST', body: JSON.stringify(changes) });
// }
 
// const sync = async () => {
//   try {
//     await database.write(async () => {
//       const lastPulledAt = await database.adapter.getLocal('last_pulled_at');
//       const remoteChanges = await pullChangesFromServer(lastPulledAt);
 
//       // Apply remote changes to the local database
//       await database.batch(
//         ...Object.values(remoteChanges).flatMap(tableChanges => [
//           ...(tableChanges.created || []).map(record => database.collections.get(tableChanges.table).prepareCreate(r => Object.assign(r, record))),
//           ...(tableChanges.updated || []).map(record => database.collections.get(tableChanges.table).prepareUpdate(r => Object.assign(r, record))),
//           ...(tableChanges.deleted || []).map(id => database.collections.get(tableChanges.table).find(id).then(r => r.prepareMarkAsDeleted())),
//         ])
//       );
 
//       await database.adapter.setLocal('last_pulled_at', Date.now());
//     });
 
//     // This part of push needs to be adapted based on WatermelonDB's sync protocol
//     // The original snippet for getLocalChanges() and pushChanges() might be too generic.
//     // WatermelonDB typically pushes changes that occur locally between syncs.
//     // A more complete sync often involves WatermelonDB's own sync mechanism or a custom one
//     // that respects its data structures and conflict resolution.
 
//     console.log('Sync successful');
//   } catch (error) {
//     console.error('Sync failed:', error);
//   }
// };
 
// // Periodically call sync() or trigger it based on connectivity changes / user actions
// // sync();

The provided snippet is a high-level concept. A full WatermelonDB sync implementation is more involved and typically uses database.sync() with a custom sync adapter or a pre-built one if available for your backend. Refer to WatermelonDB Synchronization documentation for detailed guidance.

Local Database Performance (SQLite)

For applications storing significant amounts of data locally, SQLite is a common choice. Optimizing query performance is crucial, and proper indexing is a primary way to achieve this.

(Do ✅) Implement SQLite indexing strategies for complex queries: Indexing relevant columns, especially those used in WHERE clauses or ORDER BY operations, can dramatically reduce query times. For instance, in a database with over 100,000 products, proper indexing can reduce query times from seconds to milliseconds [2].

-- Example: Creating an index on a 'products' table in SQLite
-- This index can speed up queries that filter by 'category_id' 
-- or sort by 'price' within a category.
 
CREATE INDEX idx_products_category_price 
ON products (category_id, price DESC);
 
-- Another example: Indexing for full-text search (if using FTS extension)
-- CREATE VIRTUAL TABLE products_fts USING fts5(name, description, tokenize = 'porter');

References

  1. Dev.to - Sachin Gaggar: React Native with WatermelonDB: A lightweight and reactive database for scalable apps
  2. ITNext: Using SQLite in Expo for offline React Native apps

On this page